Bending of nanoscale ultrathin substrates by growth of strained thin films and islands

نویسندگان

  • Minghuang Huang
  • P. Rugheimer
  • M. G. Lagally
  • Feng Liu
چکیده

Mechanical bending is ubiquitous in heteroepitaxial growth of thin films where the strained growing film applies effectively an “external” stress to bend the substrate. Conventionally, when the deposited film is much thinner than the substrate, the bending increases linearly with increasing film thickness following the classical Stoney formula. Here we analyze the bending of ultrathin nanometer range substrates induced by growth of coherently strained thin films. The behavior deviates dramatically from the classical linear dependence: when the film thickness becomes comparable to the substrate thickness the bending decreases with increasing film thickness. This complex bending behavior can be understood by considering evolution of strain sharing between the film and substrate. We demonstrate experimentally such counterintuitive bending of a nanoscale thin Si substrate induced by a coherently strained Ge film, in the form of islands, grown on silicon-on-insulator substrate. Larger dome islands, representing a thicker film, induce much less bending of the substrate than smaller hut islands, representing a thinner film, in direct contrast to their behavior on thick Si. We explain these observations by properly considering the island shape and strain relaxation within the island.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of free surface-induced bending upon nanopatterning of ultrathin strained silicon layer.

We provide evidence of nanopatterning-induced bending of an ultrathin tensile strained silicon layer directly on oxide. This strained layer is achieved through the epitaxial growth of silicon on a Si(0.84)Ge(0.16) virtual substrate and subsequent transfer onto a SiO(2)-capped silicon substrate by combining hydrophilic wafer bonding and the ion-cut process. Using high resolution transmission ele...

متن کامل

Effect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering

Copper thin films with nano-scale structure have numerous applications in modern technology.  In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...

متن کامل

Ultrahydrophobicity of Polydimethylsiloxanes-Based Multilayered Thin Films

The formation of polydimethylsiloxanes (PDMSs)-based layer-by-layer multilayer ultrathin films on charged surfaces prepared from water and phosphate buffer solutions has been investigated. The multilayer films prepared under these conditions showed different surface roughness. Nanoscale islands and network structures were observed homogeneously on the multilayer film prepared from pure water so...

متن کامل

بررسی ورقه‌های سیلیکونی (111) و مقایسه آن با زیر لایه‌های سیلیکونی (100)

 In the last decade, Si(100) has been used as a suitable substrate in field effect transistors. Some issues such as leakage current and tunneling current through the ultrathin films have been increased with shrinking the electronic devices – particularly, field effect transistors – to nanoscale, which is threatening more use of Si(100). We have thus demonstrated a series of experiments to grow ...

متن کامل

Preparation and growth of SnS thin film deposited by spray pyrolysis technique

In  this paper  thin  films of  tin sulfide (SnS) were deposited on  the glass substrates using spray pyrolysis method with the substrate temperatures in the range of 400–600℃, keeping the other deposition parameters constant. In  this work  the characteristic of SnS  thin  films  investigated. The XRD pattern and optical transmittance of thin films also are discussed. With the change in concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005